Polygons Questions By Topic:


## Table of Contents

1 Bronze ..... 3
1.1 Working Out Angles ..... 3
1.2 Working Out The Number Of Sides ..... 5
2 Silver. ..... 6
2.1 Working Out Angles. ..... 6
3 Gold ..... 8
3.1 Working Out Angles .....  8
3.2 Working Out The Number Of Sides ..... 11
4 Diamond ..... 13

| Let $\boldsymbol{n}=$ number of sides $\quad$ Formulae Reminders |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Sum Of All Interior Angles $180(n-2)$ | 1 Interior Angle | 1 Exterior Angle <br> We can also use the formula $180 \text { - interior angle }$ <br> Why can we use the second formula? This is because the interior and exterior angles are straight line angles <br> Interior + exterior $=180^{\circ}$ | Number Of Sides $\begin{array}{\|c\|} \hline \frac{360}{\text { exterior angle }} \\ \hline \end{array}$ <br> We can also use the formula | Angles At The Centre <br> Each angle at the centre $\frac{360}{\mathrm{n}}$ |
| You may also need to use some angle rules: |  |  |  |  |
| Isosceles T | gle <br> base angles are equal $A=\frac{180-D}{2}$ | sosceles Triangle |  | Trapezoid $\begin{aligned} & \operatorname{each} t=\frac{180--}{2} \\ & \operatorname{eaxh} t=\frac{180-}{2} \end{aligned}$ |
| $\begin{gathered} \frac{180(5-2)}{5}=108^{\circ} \\ \frac{180(8-2)}{8}=135^{\circ} \\ 360-108-135=117^{\circ} \end{gathered}$ |  |  |  |  |

1 Bronze


### 1.1 Working Out Angles

1) Work out the size of an exterior angle of a regular octagon.

2) Work out the size of an exterior angle of a regular pentagon

3) Find the sum of the interior angles of a polygon with 7 sides.
4) The diagram shows part of a regular 10-sided polygon. Work out the size of the angle marked $x$.

5) The diagram shows a regular octagon, with centre $O$. Work out the value of $x^{\circ}$.

6) The diagram shows a regular polygon with 7 sides. Write out the value of $x$.

7) RS and ST are 2 sides of a regular 12-sided polygon. RT is a diagonal of a polygon. Work out the size of angle of STR.

8) ABCDEF is a regular hexagon and ABQP is a square. Angle $\mathrm{CBQ}=x^{\circ}$. Work out the value of $x$

9) The diagram shows a square and 4 regular pentagons. Work out the size of the angle marked $x$.

10) The diagram shows a regular hexagon and a regular octagon. Calculate the size of the angle marked $x$. You must show all your working.

11) $A B C D E$ and $E H J K L$ are regular pentagons. AEL is an equilateral triangle. Work out the size of angle DEH.


### 1.2 Working Out The Number Of Sides

12) Each exterior angle of a regular polygon is $30^{\circ}$. Work out the number of sides of the polygon.
13) The size of each exterior angle of a regular polygon is $18^{\circ}$
i. Work out how many sides the polygon has
ii. Work out the sum of the interior angles of the polygon
14) The size of each interior angle of a regular polygon is $156^{\circ}$. Work out the number of sides of the polygon

2 Silver


### 2.1 Working Out Angles

15) The diagram shows a regular pentagon and parallelogram. Work out the size of the angle marked $x$.

16) $A B C D E F$ is a hexagon. $G$ is a point on $A F$ and $H$ is a point on $B C$. $G H$ is parallel to $A B$.
i. Give a reason why $x=107$
ii. Work out the value of $y$

17) $A B C D E$ is a regular pentagon. BCF and EDF are straight lines. Work out the size of angle CFD.

18) $A B C D E F G H$ is a regular octagon. $A D J$ is a straight line.

angle $B A D=$ angle $C D A$
Show that angle $C D J=135^{\circ}$
19) $A B C D E F$ is part of a regular nonagon. $B C$ is extended to $X$. $B$ is joined to $E$. Calculate the size of

[^0]3 Gold


### 3.1 Working Out Angles

20) $A B C D$ forms three sides of a regular octagon, centre $O$. Calculate the size of angle $B O C, O B C$ and $O A D$

21) $A B C D E F G H$ is a regular octagon


BCKFGJ is a hexagon
$J K$ is a line of symmetry of the hexagon
Angle $B J G=$ angle $C K F=140^{\circ}$
Work out the size of angle $K F E$
22) ABCDEFGH is a regular octagon. KLQFP and MNREQ are two identical regular pentagons. Work out the size of the angle marked $x$

23) $A B C D E$ is a regular polygon, centre $O$. Calculate the size of each of the angles marked $a, b, c$ and $d$.

24) $A B C D E F$ is part of a regular polygon with 10 sides. $B C P$ is a straight line. Calculate the size of each of the angles marked $w, x, y$, and $z$

25) $A B C D E F$ is part of a regular polygon, centre $O$. The size of angle $C O D$ and $O C D$ are in the ratio 1:2. Calculate the size of angle
i. COD
ii. CDE
iii. AED

26) $A, B, C, D$ and $E$ are corners of a regular polygon with centre $O$. $B C$ is extended to $P$

i. Calculate the size the angle marked $w$
ii. How many sides does the polygon have
iii. Calculate the size of each of the angles marked $x, y$, and $z$
iv. What type of triangle is OBD?
27) $A B C D F$ is part of a regular 15-sided polygon. $C D$ is extended to $Z$. Calculate

i. the size of an exterior angle, $e$
ii. the size of an interior angle
iii. the size of angle $x$
iv. the size of angle $y$

### 3.2 Working Out The Number Of Sides

28) The diagram shows two congruent regular pentagons and part of a regular n-sided polygon $A$. Two sides of each of the regular pentagons and two sides of $A$ meet at the point $P$. Calculate the value of $n$. show all your working clearly.

29) The diagram shows part of a pattern made from tiles. The pattern is made from two types of tiles, tile $A$ and tile $B$. Both tile $A$ and tile $B$ are regular polygons. Work out the number of sides tile $A$ has.

30) The diagram shows part of a tiling pattern. The tiling pattern is made from three shapes. Two of the shapes are squares and regular hexagons. The third shape is a regular $n-$ sided polygon $A$. Work out the value of $n$

31) $A B, B C$ and $C D$ are three sides of a regular polygon $P$. Show that polygon $P$ is a hexagon. Show your working

32) The diagram shows part of a tiling pattern. The tiling pattern is made from three shapes. Two of the shapes and regular hexagons. The third shape is a regular $n$-sided polygon A. Work out the value of $n$.

33) The sides of an equilateral triangle $A B C$ and two regular polygons meet at the point $A$. $A B$ and $A D$ are adjacent sides of a regular 10 -sided polygon. $A C$ and $A D$ are adjacent sides of a regular $n$ sided polygon. Work out the value of $n$

34) A regular pentagon, a square and one other regular shape meet at a point and perfectly fit together leaving no gap. How many sides does this third mystery shape have and what is the sum of the interior angles?

### 3.3 With Circle Theorems

35) PQRST is a regular pentagon. $R, U$ and $T$ are points on circle, centre $O$. QR and PT are tangents to the circle. RSU is a straight line. Prove that $\mathrm{ST}=\mathrm{UT}$.
Hint: prove isosceles triangle by base angles being equal


## 4 Diamond


36) The diagram shows a hexagon with 1 line of symmetry.
$F A=B E F=C D$
Angle $\mathrm{ABC}=117^{\circ}$
Angle $B D C=2 \times$ angle $C D E$
Work out the size of angle AFE.

37) $A B C D E F$ is part of a regular polygon. $C D$ is extended to $Z$
i. Calculate the size of the angle marked $v$
ii. Write down the number of sides of the regular polygon
iii. Calculate the size of the angle DCE
iv. Calculate the size of the angle FEC
v. Calculate the size of the angle EFC

38) A Polygon has an interior angle exactly 6.5 times the size of an exterior angle. Determine if this shape could be a regular polygon.
39) An irregular polygon has 5 of its angles as $79^{\circ}, 42^{\circ} 49^{\circ}, 52^{\circ}$ and $97^{\circ}$. Explain why this shape cannot be a hexagon.
40) The diagram shows an incomplete regular polygon. The size of each interior angle is 140 degrees greater than the size of each exterior angle. Work out the number of the sides the regular polygon has.

41) The diagram shows part of a regular polygon. The interior angle and the exterior angle at a vertex are marked. The size of the interior angle is 7 times the size of the exterior angle.


Work out the number of sides of the polygon.
42) The size of each interior angle of a regular polygon is 11 times the size of each interior angle. Work out the number of sides the polygon has.

Polygons Questions By Topic Solutions


Pentagon


## Table of Contents

1 Bronze ..... 2
1.1 Working Out Angles ..... 2
1.2 Working Out The Number of Sides .....  .7
2 Silver. ..... 9
2.1 Working Out Angles. ..... 9
3 Gold ..... 13
3.1 Working Out Angles ..... 13
3.2 Working Out The Number Of Sides ..... 17
4 Diamond ..... 21

## 1 Bronze



### 1.1 Working Out Angles

1) 


2)

3)

4)

5)

6)


Now that we have the interior angle $y$ we can work out $x$ by looking at the triangle
We have an isosceles triangle (since both sides of the triangle are the same length)
Angles of a triangle add to $180^{\circ}$
Base angles of an isosceles triangle are equal

$$
x=\frac{180-128.571}{2}=25.715
$$

7) 


8)

9)


Way 1: Use formula for sum of interior angles $180(n-2)$
Way 2: Use formula for exterior angle $\frac{360}{n}$

$$
\text { sum of all angles }=180(5-2)
$$

$$
=180(3)
$$

$$
\text { Exterior angle } x=\frac{360}{5}=72^{\circ}
$$

$$
=540
$$

Interior angle $=180^{\circ}-$ exterior $=180-72=108^{\circ}$

- 1 interior $=y=\frac{540}{5}=108^{\circ}$

We have two pentagons connected to a square
Each interior angle of a square inside is $90^{\circ}$
We also know that angles at a point add to $360^{\circ}$

$$
x=360-108-108-90=54^{\circ}
$$

10) 


11)


We consider the pentagon and the triangle to find the interior angles $y$ and $z$
Way 1: Use formula for sum of interior angles $180(n-2)$
Way 2: Use formula for exterior angle $\frac{360}{n}$
Pentagon: $\quad$ sum of all angles $=180(5-2)$

$$
=180(3)
$$

$$
=540
$$

1 interior $=y=\frac{540}{5}=108^{\circ}$
Triangle: $\quad$ sum of all angles $=180(3-2)$

$$
=180(1)
$$

$$
=180
$$

1 interior: $=z=\frac{180}{3}=60^{\circ}$

[^1]
### 1.2 Working Out The Number of Sides

12) 

Way 1: Use formula for sum of interior angles $180(n-2)$ Way 2: Use formula for exterior angle $\frac{360}{n}$

> Interior angle $=180-$ exterior angle
> Interior angle $=180-30=150^{\circ}$

$$
1 \text { interior: } \frac{180(n-2)}{n}=150
$$

Solve for $n$ :

$$
\begin{gathered}
\frac{180 n-360}{n}=150 \\
180 n-360=150 n \\
30 n=360 \\
n=\frac{360}{30}=12
\end{gathered}
$$

$$
\text { Exterior angle }=\frac{360}{30}=12
$$

13) 

Way 1: Use formula for sum of interior angles $180(n-2)$

$$
\begin{gathered}
1 \text { interior: } \frac{180(n-2)}{n}=156 \\
\text { Solve for } n: \\
\frac{180 n-360}{n}=156 \\
180 n-360=156 n \\
24 n=360 \\
n=\frac{360}{24}=15
\end{gathered}
$$

14) 

| i. |  |
| :--- | :--- |
| Way 1: Use formula for sum of interior angles $180(n-2)$ <br> Interior angle $=180-$ exterior angle <br> Interior angle $=180-18=162^{\circ}$ | Way 2: Use formula for exterior angle $\frac{\mathbf{3 6 0}}{n}$ |
| 1 interior: $\frac{180(n-2)}{n}=150$ |  |
| Solve for $n:$ | Exterior angle $=\frac{360}{18}=20$ |
| $\frac{180 n-360}{n}=162$ |  |$\quad$.

$$
\begin{gathered}
180 n-360=162 n \\
18 n=360 \\
n=\frac{360}{18}=20
\end{gathered}
$$

ii.

Use formula for sum of interior angles 180( $n-2$ )

$$
\begin{aligned}
\text { sum of all angles } & =180(20-2) \\
& =180(18) \\
& =3240^{\circ}
\end{aligned}
$$

2 Silver


### 2.1 Working Out Angles

15) 



Consider the Pentagon first

Way 1: Use formula for sum of interior angles $180(n-2)$

$$
\begin{aligned}
\text { sum of all angles }= & 180(5-2) \\
& =180(3) \\
& =540
\end{aligned}
$$

1 interior $=z=\frac{540}{5}=108^{\circ}$

Way 2: Use formula for exterior angle $\frac{360}{n}$
Exterior angle $=\frac{360}{5}=72^{\circ}$
Interior angle $=z=180^{\circ}$-exterior

$$
=180-72=108^{\circ}
$$

Now consider the parallelogram. Adjacent angles of a parallelogram add up to $180^{\circ}$ (same side/co-interior angles)

$$
y=180-117=63^{\circ}
$$

16) 


17)


Consider the Pentagon
Way 1: Use formula for sum of interior angles $180(n-2)$
Way 2: Use formula for exterior angle $\frac{360}{n}$
Pentagon: $\quad$ sum of all angles $=180(5-2)$

$$
\begin{aligned}
& =180(3) \\
& =540
\end{aligned}
$$

$$
1 \text { interior }=\angle \mathrm{CDE}=\frac{540}{5}=108^{\circ}
$$

$$
\text { Exterior angle }=\angle C D F=180-108=72^{\circ}
$$

CDF is an isosceles triangle, therefore the base angles are equal

Pentagon:
Exterior angle $=\angle \mathrm{CDF}=\frac{360}{5}=72^{\circ}$
CDF is an isosceles triangle, therefore the base angles are equal

The sum of the angles in a triangle is $180^{\circ}$.
$\angle C F D=180-72-72=36^{\circ}$

The sum of the angles in a triangle is $180^{\circ}$.

$$
\angle C F D=180-72-72=36^{\circ}
$$

18) 



Firstly, we consider the Octagon

Way 1: Use formula for sum of interior angles $180(n-2)$
Way 2: Use formula for exterior angle $\frac{\mathbf{3 6 0}}{n}$
sum of all angles $=180(8-2)$

$$
=180(6)
$$

Exterior angle $=\frac{360}{8}=45^{\circ}$

$$
=1080
$$

Interior angle $=180^{\circ}$-exterior

$$
=180-45=135^{\circ}
$$

Next, we consider the green quadrilateral
$A B C D$ is a quadrilateral. Therefore, the sum of angles is $360^{\circ}$ and the base angles $x$ are equal since $A B C D$ is an isosceles trapezoid
$x=\frac{360-135-135}{2}=45^{\circ}$
Angles on a straight line add to $180^{\circ}$
19)


Firstly, we consider the nonagon
i. Use formula for exterior angle $\frac{360}{n}$
i. Use formula for interior angle Interior angle $=180^{\circ}$-exterior
1 exterior $=\frac{360}{9}=40^{\circ}$

- Interior angle $=180^{\circ}$-exterior

$$
=180-40=140^{\circ}
$$

angle $D C X=40^{\circ}$
iii. Now we look at BCDE which is a quadrilateral. Therefore, sum of angles is $360^{\circ}$ and base angles are equal.
$\angle \mathrm{CBE}=\angle \mathrm{BED}=\frac{360-140-140}{2}=40^{\circ}$
Angle $\mathrm{ABE}=140-40=100^{\circ}$

3 Gold


### 3.1 Working Out Angles

20) 



```
ABJGH is a pentagon therefore,
```

                                    Sum of interior angles \(=180(5-2)=540^{\circ}\)
                                    \(\frac{540-220-135-135}{2}=25^{\circ}\)
    22) 


23)


$$
\begin{gathered}
\text { Use formula for exterior angle } \frac{360}{n} \\
\qquad \begin{array}{c}
a=\frac{360}{5}=72^{\circ} \\
b=\frac{180-72}{2}=54^{\circ} \\
c=\frac{180(5-2)}{5}=108^{\circ} \\
e=\frac{180-108}{2}=36^{\circ} \\
d=108-36-36=36^{\circ}
\end{array}
\end{gathered}
$$

Note: We could have also looked at triangle ADB for find $d$
Angle $O B D=$ angle $D A O=108-54-36=18$ (we know the full exterior angle is 108)

$$
\text { Reflex angle } A O B=360-72=288 \text { (angles at a point add to } 360^{\circ} \text { ) }
$$

$$
360-288-18-18=36^{\circ}
$$

24) 



\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{} <br>

\hline \begin{tabular}{l}
i. $\quad x: y=1: 2$ <br>
This means:
$$
\frac{x}{y}=\frac{1}{2}
$$ <br>
Re - arranging gives:

$$
y=2 x
$$ <br>

We know the sum of the angles of a triangle is $180^{\circ}$ so we can form an equation:

$$
\begin{aligned}
& 2 x+2 x+x=180 \\
& 5 x=180
\end{aligned}
$$

$x=36^{\circ}$

 \& 

ii. The angle at the centre $x=\frac{360}{n}$ where $n=$ number of sides

$$
36=\frac{360}{n}
$$ <br>

Solving for $n$ gives

$$
n=10
$$ <br>

We can plug this in the formula for an interior angle

$$
\frac{180(10-2)}{10}=144^{\circ}
$$

\end{tabular} <br>

\hline | iii. $\quad A B C D E$ is a 5 -sided shape |
| :--- |
| $180(5-2)=540^{\circ}($ sum of interior angles) |
| The base angles of this 5-sided shape are equal |
| $\frac{540-3(144)}{2}=54^{\circ}$ | \& <br>

\hline
\end{tabular}

26) 



$$
\begin{gathered}
y=\frac{180-30}{2}=75^{\circ} \\
\frac{180-150}{2}=15 \\
z=\frac{180-30-30}{2}=60^{\circ} \text { using isosceles triangle OBD } \\
\text { or } \\
z=150-75-15=60^{\circ} \text { using angle } D=150^{\circ}
\end{gathered}
$$

iv.

Equilateral
27)


### 3.2 Working Out The Number Of Sides

28) 

|  |  |
| :---: | :---: |
| Way 1: Use formula for sum of interior angles 180( $n-2$ ) $\begin{aligned} \text { sum of all angles } & =180(5-2) \\ & =180(3) \\ & =540 \end{aligned}$ 1 interior $=x=: \frac{540}{5}=108^{\circ}$ | Way 2: Use formula for exterior angle $\frac{360}{n}$ <br> Exterior angle $=\frac{360}{5}=72^{\circ}$ <br> Interior angle $=x=180^{\circ}$-exterior $=180-72=$ $108^{\circ}$ = |
| We have two pentagons connected to polygon $A$ at point $P$. We also know that angles at a point add to $360^{\circ}$ and Interior angle of $A=n=360-108-108=144^{\circ}$ |  |


| Exterior angle of $\mathrm{A}=180-144=36^{\circ}$ |
| :---: |
| Therefore, $\mathrm{n}=\frac{360}{36}=10$ |

29) 



Tile B (triangle) must be equilateral since it is a regular triangle.

$$
\begin{gathered}
360-60=300^{\circ} \\
1 \text { interior }=\frac{300}{2}=150^{\circ} \\
1 \text { exterior } 180-150=30^{\circ} \\
\mathrm{n}=\frac{360}{\text { exterior angle }}=\frac{360}{30}=12
\end{gathered}
$$

30) 


31)


We have a square so the we have a perpendicular angle.
Interior of 12 -sided polygon $=\frac{180(12-2)}{12}=150^{\circ}$

- 1 interior $=360-150-90=120^{\circ}$

1 exterior of $P=180-120=60^{\circ}$
$\mathrm{n}=\frac{360}{\text { exterior angle }}=\frac{360}{60}=6$
therefore, we have a hexagon.
32)

33)

| Consider the Polygon |
| :---: |
| $y=\frac{180(10-2)}{10}=144^{\circ}$ <br> $x=360-144-60=156^{\circ}$ <br> 1 exterior $180-156=24^{\circ}$ <br> $n=\frac{360}{\text { exterior angle }}=\frac{360}{24}=15$ |
| D |

34) 

Angles at a point add up to $360^{\circ}$
remaining angle at the centre $=360-108-90=162^{\circ}$
Exterior angle of the shape $=180-162=18^{\circ}$
number of sides $=\frac{360}{\text { exterior angle }}=\frac{360}{18}=20$ sides
sum of interior angles $=180(20-2)=3240^{\circ}$
35)


Interior angle of a regular pentagon $\frac{180(5-2)}{5}=108^{\circ}$
Angle TSU $=180-108=72^{\circ}$ (angles on a straight line add to $180^{\circ}$ )
Form the 2 lines OR and OT
Angle $\mathrm{QRO}=$ Angle $\mathrm{PTO}=90^{\circ}$ (a tangent meets a radius at $90^{\circ}$ )
Angle ROT $=540-(90+90+108+108)=144^{\circ}$ (angles in Pentagon PQRST add to $540^{\circ}$ )
Angle RUT $=\frac{144}{2}=72^{\circ}$ (angle at the centre is twice the angle at the circumference)
So, we have angle RUT $=72^{\circ}$ and that Angle RUT $=72^{\circ}$
Hence the base angles of triangle SUT are equal, so SUT is an isosceles triangle $\Rightarrow S T=U T$

## 4 Diamond


36)


These are added to the diagram along with the line of symmetry. And due to the line of symmetry,

> angle $A=$ angle $B$
> angle $F=$ angle $C$
> angle $E=$ angle $D$

Use formula for sum of interior angles $180(n-2)$

$$
\begin{gathered}
180(6-2)=720 \\
117+117+2 x+2 x+x+x=720 \\
234+6 x=720 \\
6 x=486 \\
x=81^{\circ}
\end{gathered}
$$

$$
\angle A F E=2 x=2(81)=162^{\circ}
$$

37) 

|  |  |
| :---: | :---: |
| $\text { i. } \quad \begin{aligned} & 4 v+v=180^{\circ} \\ & 5 v=180^{\circ} \\ & v=36^{\circ} \end{aligned}$ | ii. $\quad \frac{360}{36}=10$ |
| iii. $\frac{180-4(36)}{2}=18^{\circ}$ | $\begin{array}{ll} \text { iv. } \quad & \frac{180(10-2)}{10}=144^{\circ} \text { or } \\ 4 v=4(36)=144^{\circ} \\ & 144-18=126^{\circ} \end{array}$ |
| v. CDEF is a quadrilateral (isosceles trapezoid with equal base angles) <br> $\frac{360-144-144}{2}=36^{\circ}$ |  |

38) 

Way 1: Use formula for an interior angle $\frac{180(n-2)}{n}$ and
an exterior angle is $\frac{\mathbf{3 6 0}}{n}$

$$
\begin{gathered}
\text { Exterior angle } \frac{360}{n} \\
\text { Interior angle } 180-\frac{360}{n} \\
\begin{array}{c}
180-\frac{360}{n}=6.5\left(\frac{360}{n}\right) \\
180-\frac{360}{n}=\frac{2340}{n} \\
180=\frac{2700}{n} \\
180 n=2700 \\
n=\frac{270}{180}=15 \text { sides }
\end{array}
\end{gathered}
$$

Yes since $n$ is a whole number. Each interior angle is $156^{\circ}$ and each exterior angle is $24^{\circ}$

Way 2: Use fact that interior angle + exterior angle adds to $\mathbf{1 8 0}^{\circ}$

Call an exterior angle $x$
An interior angle is $6.5 x$

We know these angles add to $180^{\circ}$ since they lie on a straight line

$$
x+6.5 x=180
$$

$$
7.5 x=180
$$

$$
x=24^{\circ}
$$

Yes. Each interior angle is $156^{\circ}$ and each exterior angle is $24^{\circ}$. All interior angles are the same and all exterior angles are the same, therefore the shape is regular
39)

[^2]40)


Way 1: Use formula for an interior angle $\frac{180(n-2)}{n}$ and an
Way 2: Use fact that interior angle + exterior angle exterior angle is $\frac{360}{n}$

$$
\begin{aligned}
& \frac{180(n-2)}{n}=140+\frac{360}{n} \\
& \frac{180 n-360}{n}=140+\frac{360}{n}
\end{aligned}
$$

Multiply all terms by $n$

$$
\begin{gathered}
180 n-360=140 n+360 \\
180 n-140 n=360+360 \\
40 n=720 \\
n=18
\end{gathered}
$$

Call
an interior angle $x$
an exterior angle $y$
We can build 2 equations
(1): $x+y=180$
(2): $x=y+140$

Solve simultaneously
$y+140+y=180$
$2 y+140=180$
$2 y=40$
$y=20$
So we have an exterior angle is 20
We know the formula for an exterior angle is $\frac{360}{n}$ $\frac{360}{20}=18$
Way 3: Use formula for an interior angle $\frac{180(n-2)}{n}$ and an exterior angle is $\mathbf{1 8 0}$ - interior angle

$$
\begin{aligned}
& \frac{180(n-2)}{n}=140+\left(180-\frac{180(n-2)}{n}\right) \\
& \frac{180 n-360}{n}=140+\left(180-\frac{180 n-360)}{n}\right)
\end{aligned}
$$

Multiply all terms by $n$

$$
\begin{gathered}
180 n-360=140 n+180 n-(180 n-360) \\
180 n-360=140 n+180 n-180 n+360 \\
180 n-140 n-140 n=360+360 \\
40 n=720 \\
n=18
\end{gathered}
$$

41) 



$$
\begin{gathered}
x=22.5^{\circ} \\
n=\frac{360}{\text { exterior angle }} \\
n=\frac{360}{22.5}=16
\end{gathered}
$$

42) 

$$
\begin{gathered}
11 x+x=180^{\circ} \\
12 x=180^{\circ} \\
x=15^{\circ} \\
n=\frac{360}{\text { exterior angle }} \\
n=\frac{360}{15}=24
\end{gathered}
$$


[^0]:    i. Angle DCX
    ii. Angle BCD
    iii. Angle ABE

[^1]:    We have two pentagons and an equilateral triangle connected together.

[^2]:    The sum of the interior angles of a hexagon $180(6-2)=720^{\circ}$
    Sum of angles given $=79+42+49+52+97=319^{\circ}$
    $720-319=401^{\circ}$
    So the $6^{\text {th }}$ angle is $401^{\circ}$
    Interior + exterior $=180^{\circ}$ so it is not possible for either an interior or exterior angle to be $180^{\circ}$ or more.
    There $401^{\circ}$ is not a possible answer for an interior angle, hence the shape cannot be a hexagon

